Weak Lensing Program

Christopher Hirata (Caltech)
AFTA-WFIRST SDT Meeting #1
November 19, 2012

Outline

- 1. Weak Lensing Brief Overview
- 2. Implications for Mission Design
- 3. Final Thoughts

1. Weak Lensing – Brief Overview

What is Weak Lensing?

- Slight (~1%) distortion of the image of a galaxy due to matter along the line of sight.
 - Shear = I.o.s. integral of tidal field
 - Manifest in the ellipticity of a galaxy.
 - Since shear << intrinsic ellipticity, must do statistics.

- Magnification = l.o.s. integral of density
 - Less mature but lots of recent progress only briefly in this talk.

Major Uses

WL serves both cosmology and galaxy evolution

- The growth of large scale structure via the statistics of weak lensing.
- 2. The connection between galaxies and their host dark matter haloes.
- 3. Galaxy "biasing" the relation between galaxies and their large-scale environment.

Growth factor for linear matter perturbations

- Fixed high-z universe to keep same CMB normalization
- w = dark energy equation of state (=-1 for cosmological constant)
- γ = growth rate parameter (≈0.6 in GR)

$$f = \frac{d \ln G}{d \ln a} = \Omega_m^{0.6}$$

Observable: the shear power spectrum

- Shear power spectrum as a function of source redshift z_s
- This is actually an integral over structures at 0<z<z_s; depends on distance scale as well as structure growth.
- Error bars are DRM1 forecasts.
- Much more information in the 45 cross-power spectra.
- Depends on almost every conceivable cosmological parameter. Combine with other datasets to break degeneracies.

SDSS Results

[i.e. shamelessly promoting our own work]

- Amplitude of fluctuations (Huff et al):
 - Fixed other parameters to WMAP values

$$\sigma_8 = 0.64^{+0.10}_{-0.15}(1\sigma)$$

- Independent analysis of the same dataset by Fermilab group (Lin et al):
 - Includes e.g. different image stacking algorithm, sky subtraction,
 etc.

 $\sigma_8 = 0.64^{+0.08}_{-0.13}(1\sigma)$

- This worked but:
 - Statistical errors are large
 - ~ 10 results in the literature of similar size errors; 1/v10 game not recommended
 - Limited redshift baseline
 - Svstematic errors small but not negligible

What is needed for a WL program?

Statistics

- Lots and lots of galaxies
- Shape Measurement
 - Resolve and fully sample galaxies, high S/N
 - Accurate knowledge/correction of PSF + detector effects
 - Power/cross spectra from multiple redundant subsets of the data (for cross checks internal to WL method).
- Photometric Redshifts
 - Required both to measure signal(z) and suppress intrinsic alignments (needs low outlier fraction)
 - Photometric data points from (at least) u—H bands.
 - Calibration sample (with massively multiplexed spectrographs).
- There may be some substitutability on these points (e.g. outside OIR bands), and some fractions of the program are possible with subsets of the data. However we can't skimp on a requirement just because it's hard.
- There is no requirement to do all of this from the same platform. No one of LSST, WFIRST, or Euclid is a complete program by itself!

Shape measurement conventions

[See Bernstein & Jarvis 2002 for the 40-page version of this slide]

Ellipticity: A property of the *galaxy* – may be:

- Intrinsic or observed (i.e. including lensing)
- With or without PSF smearing
- Depends on fitting method for general galaxy

$$e_1 = \frac{a^2 - b^2}{a^2 + b^2} \cos 2\phi$$
 $e_2 = \frac{a^2 - b^2}{a^2 + b^2} \sin 2\phi$

Shear: A property of the lens mapping

$$\frac{\partial x_{\text{source}}}{\partial x_{\text{image}}} = \begin{pmatrix} 1 - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 + \gamma_1 \end{pmatrix}$$

Responsivity: Relation of mean ellipticity of galaxy population to shear (depends on the galaxy population and ellipticity measurement method) $\left\langle e_i \right\rangle = 2 \Re \gamma_i$

Resolution factor: Intrinsic size of the galaxy relative to the PSF (Between 0 and 1, bigger is better) $R = \frac{r_{\rm eff,gal}^2}{r_{\rm eff,gal}^2 + r_{\rm eff,psf}^2}$

The WFIRST weak lensing program has the raw statistical power to measure σ_8 to ±0.001. Similar advances will be made on the other parameters relative to current weak lensing programs.

But we are trying to measure a 1% shear signal to 0.1% accuracy. Reliable results at this level will require ~2 order of magnitude improvement in systematic error control in shape measurements. Other big WL programs (LSST, Euclid) face similar issues.

Improvements also needed in other areas, e.g. photo-z training \rightarrow but that's another talk (ask me later about Subaru-Prime Focus Spectrograph)

The WFIRST weak lensing program has the raw statistical power to measure σ_8 to ± 0.001 . Similar advances will be made on the other parameters relative to current weak lensing programs.

But we are trying to measure a 1% shear signal to 0.1% accuracy.

Reliable results at this level will require ~2 order of magnitude improvement in systematic error control in shape measurements.

Other big WL programs (LST, Euclid) face similar issues.

Improvements also needed in other areas, e.g. photo-z training \rightarrow but that's another talk (ask me later about Subary-Frime Focus Spectrograph)

Systematic Errors

The Major Systematic Errors

Intervening matter:

- Nonlinear power spectrum/ multiple deflections?
- Baryonic corrections?

- Redshifts?
- Intrinsic alignments?

- Point spread function?
- Flats, astrometry ... ?
- Detector linearity?

Data analysis:

- Image processing algorithms?
- Source selection/blending?
- Shape measurement?

2. Implications for Mission Design

Contents:

Galaxy yields & statistical errors

Sampling

PSFs

Systematic errors

Advantages of WFIRST Architecture

- 1. Observations at L2? with a temperature-controlled telescope eliminate both the atmosphere and the large thermal fluctuations experienced on the ground and on HST.
- 2. Fully-sampled images in 3? shape measurement filters (JHK?) enable internal cross checks and color corrections on every galaxy.
- 3. Redundant passes in each filter support calibration and null tests internal to the science data itself.
- 4. Unobstructed big telescope allows simple, compact small PSF even in the NIR, where galaxies are bright.
- 5. High-SNR photometry in YJHK?, obtained simultaneously with shape measurement and combined with ground based data, allow for unambiguous photo-z's across the entire relevant range of redshifts.

Some comments on tiling

- WFIRST operations concept includes multiple passes over the sky, separated in time, and rolled.
 - Allows internal relative calibration, field dependence of color terms, any contributions to the PSF fixed to the detector ... at relevant background levels.
 - Null tests available at the image processing level.
 - Also enables other precision applications, e.g. $f_{\rm NL}$ studies ...
- Covering the sky in stripes is faster, but won't allow these tests. Don't give in to the temptation!

DRM1 strategy (DRM2, AFTA similar)

Galaxy populations

- Forecasts generally based on some input catalog and a model for which galaxies will lead to measurable shapes.
 - Inputs for forecast based on COSMOS. At AFTA depth this may be too conservative due to incompleteness (we're working on this).
- Current WFIRST forecasts (IDRM, DRM1/2, and now this study) assume:
 - Detected at SNR>18 (need this cut to keep noise-related biases small, generally ~1/SNR² we will have to trust the correction!)
 - Ellipticity measurement σ_e <0.2 (density of objects gets downweighted if σ_e comparable to intrinsic spread this downweighted density is n_{eff})
 - Resolution factor R>0.4
- In principle we could push all of these cuts somewhat farther but must carry margin.

PSF half light radius, r_{eff}

Units are arcsec

	DRM2	DRM1	DRM0	
Z	0.174	0.148	0.111	
Υ	0.181	0.154	0.120	
J	0.195	0.166	0.134	
Н	0.218	0.185	0.150	Shape measurement
K	0.252	0.214		filters
[K _s]			[0.165]	

DRM0 is 1.5—1.6x better than DRM2, and 1.2—1.3x better than DRM1.

Imaging depths/times at 250 K

	Case A	Case B	Case C
Υ	5 x 94 s	5 x 131 s	5 x 247 s
	25.93	26.39	27.10
J	6 x 84 s	6 x 115 s	6 x 205 s
	25.92	26.37	27.02
Н	5 x 94 s	5 x 131 s	5 x 247 s
	25.95	26.40	27.07
K_s	5 x 147 s	5 x 246 s	5 x 247 s
	25.82	26.33	26.33
Time (days per 1000 deg²)	128 [87 without K _s]	178 [113 without K _s]	260 [195 without K _s]

- Table shows exposure times and depth (5σ pt src, AB mag)
- DRM2 uses **126** days per 1000 deg² (would be 94 days without K filter)
- Assumed a "K_s" filter at 1.83—2.15 μm in place of DRM1/2 K filter.

Weak Lensing Performance

		DRM2	DRM1	AFTA-A (250 K)			AFTA-A (280 K)		
Survey Rate Case				А	В	С	Α	В	С
n _{eff} J [gal / arcmin ²] H K or K	J	24	31	25	34	63	25	34	63
	Н	27	33	31	46	70	31	46	62
	K or K _s	24	32	31	46	46	N/A	N/A	N/A
Time [days / 1k deg²]		126	131	128	178	260	88	118	195

- All calculations are at the nominal number of exposures.
 - Once we are closer to the final design, we will take credit for the regions observed ≥N+1 times.
 - For consistency, this table shows the equivalent numbers from DRM1/2.
- The time includes the Y band imaging (for photo-z).
- This is still based on the COSMOS catalog. **DRMO Case C may suffer incompleteness** and there will be a modest increase.
 - This is a somewhat nontrivial exercise to do right a job for the SDT.

Why are we using the PSF half light radius?

✓ WL shape measurement depends on the SNR of a galaxy and a "penalty factor" for PSF smearing and non-Gaussian profile.

$$\sigma_e = \frac{2\sqrt{f_{\text{pen}}}}{\text{SNR}}$$

- ✓ The plot on the right shows a comparison of WL shape measurement penalty factor for DRM2 and 2.4 m on-axis (computed by the Fisher matrix integral over spatial frequencies), for an exponential profile galaxy in H band.
- ✓ In comparing off- and on-axis telescopes, scaling by the half-light radius is an excellent indicator of the amount of degradation.

[Ratio of half-light radii]

Sampling I

 Images on multipixel detectors are (noisy) discrete samples of a continuous field:

$$I(\mathbf{x}) = [f * G](\mathbf{x})$$

- f = actual image of the sky
- G = point-spread function (including detector response)
- I = observed image
- * = convolution
- WL data analysis operations work on "continuous" data.
- But real images are discrete since they are observed on pixelized detectors. Only sampled at positions $\mathbf{x} = (j_1 P, j_2 P)$ where $P = \text{pixel scale}, j_1, j_2 = \text{integers}.$
- Sampling theorems tell us when discrete data can be transformed into continuous data.

Sampling II

 A function is band limited if its Fourier transform is 0 beyond some maximum frequency W:

$$I(x,y) = \int \tilde{I}(u,v)e^{2\pi i(ux+vy)}dudv \iff \tilde{I}(u,v) = \int I(x,y)e^{-2\pi i(ux+vy)}dxdy$$

$$\tilde{I}(u,v) = 0 \text{ for } \sqrt{u^2 + v^2} \ge W$$

- In this case samples on a regular grid of pitch <1/(2W) enables transformation into a continuous function.
 - Rotation, translation, and (with some restrictions) shear and postprocessing changes to the PSF are then simple.
- Only band limit guaranteed by fundamental physics is D/λ .
 - Even in the case of obstructions.
 - Other contributions (pixel response, jitter) may occur in some cases.
 - Galaxies have no band limit required sampling is set by the PSF.

Options for Recovering Full Sampling

1. Full sampling at native pixel scale

- Common in ground based applications where seeing eliminates high spatial frequencies
- For diffraction limited space mission this requires pixel scale $<\lambda/(2D)$ usually too small FoV.

2. Full sampling through ideal subpixel ($\frac{1}{2}$ or $\frac{1}{3}$) dithers

- Common in HST programs
- Positions must be repeated to dodge defects (CRs, hot pixels)
- Only very small dithers can be accommodated with geometric distortions – not well suited to wide angle filled surveys or internal relative calibration

3. Full sampling through non-ideal/rolled dithers

- This case naturally occurs in wide angle filled surveys, e.g. WFIRST!
- Must handle irregularly sampled data, different PSFs
- No simple, generally applicable theory handled by simulations (Rowe, Hirata, Rhodes 2011)

An Example

PSFs

- Key advantage in space is a PSF that is small and stable.
- Must measure PSF using stars and track changes (aberrations, jitter)
 - Overall error budget is $4x10^{-4}$ for in-band PSF errors (scales >1')
 - Note: "in band" means we don't need the PSF to this accuracy in every pixel
 - Applies to final data product so covers additional errors introduced by e.g. stacking
 - Must keep number of varying degrees of freedom finite & small
 - Do not want to allow aberrations to change during an exposure.
 - See IDRM sims by Alden Jurling
- Changes due to e.g. SM motion result in changes in the Zernike amplitudes that are low-order polynomials across the field.
 - But can lead to PSF ellipticity variations at all scales by beating against
 e.g. focal plane non-flatness.

WFIRST-IDRM Wavefront Distortion Map (Sensitivity to Secondary Mirror Perturbations)

- Significant astigmatism from de-centering SM, but varies slowly across field.
- Other off-axis concepts, e.g. DRM2, give similar patterns.
- In on-axis concepts, dominant aberration from de-centering SM is coma instead.

PSF Stars

- Determination of PSF from stars scales roughly as $1/\text{sqrt}\{N_{\gamma}\}$, where N_{ν} is the total number of photons from stars.
 - If S/N is distributed across the focal plane and not concentrated in a few stars.
 - Getting enough stars has been a problem in WL programs on narrow field telescopes (HST).
- Expected from Trilegal model @ SGP:
 - Only count stars of high S/N (≥10k photons/star) and far from full well (<50k photons in the brightest pixel)

	J		Н		K or K _s	
	N _*	N_{γ}	N _*	N_{γ}	N _*	N_{γ}
DRM1	658	31M	708	38M	693	43M
DRM2	1143	64M	1195	74M	1185	89M
DRM0A Case A	540	30M	603	34M	580	39M
DRM0A Case B	610	34M	676	39M	679	45M
DRM0A Case C	696	40M	800	47M	681	46M

Is your PSF the one you want?

- Assumption is that PSF stars must track the same integration time used for the galaxies (to get the same jitter pattern).
 - No saturated stars even if you have a few samples before saturation.
 - No stars or galaxies with ramps corrected for cosmic ray impacts.
- (Non)-linearity/reciprocity
 - Stars are typically ~300 times brighter than background
 - Need to measure the relevant nonlinearity curve (exposure time, sampling method); several methods possible

Color effects

- SED(star) ≠ SED(galaxy), variation even within a galaxy
- Diffraction/aberrations
- Refractive optics (lateral color introduced by filter)
- Depth of charge deposition in detector (what happens to PRF?)

Colors

- Color dependence of PSF is a major issue since it causes stars and galaxies to have different PSF!
 - Calibration biases up to several %.
 - Complex z dependence.
 - Airy worse than Gaussian.
- Optical & NIR/WFIRST have different issues:
 - With ≥2 filters, can always correct for broadband slope.
 - Difficult source of color dependence is different – Balmer/4000Å break vs emission lines, Hα+[N ||].
 - Need multiple survey filters as a check on any correction scheme.
 - ≥4 filters (optical + WFIRST-J, H, K) enable us to "dodge" particularly nasty features.

Example of a Null Test – SDSS

In a survey observed multiple times, can search for differences between the shear signals measured in 2 passes. This was needed to convince me that we were doing something right.

Colour difference plot, 0.5(rr+ii)-ri: ++

Conclusions

- WFIRST represents a unique opportunity to mitigate the major systematics in weak lensing.
 - This was true for DRM1/2, similar strategies should be implemented if we go with the 2.4 m telescope.
- I am excited about the opportunities for my 2nd term on the WFIRST SDT and am looking forward to cooperating with the agency and the Congress to accomplish this project successfully.